Project Update

EIS and ROD Documents through Current Design

Preliminary Design

- Completed preliminary design for full-build for all segments
- MDT has started ROW along Five Mile Road
- Prefinal design complete for Five Mile Road
- Yellowstone Segment PIH submittal end of July (about 70% design)

Johnson Lane Interchange

- Completed initial traffic operations analyses (Tier 1)
- Completed detailed traffic operations analyses (Tier 2)
- Working with MDT to define a design scope

The project is currently addressing preliminary design for each of the various segments.
CURRENT TIMELINE*

Billings Bypass Segments

- **2019**: Anticipated construction of Five Mile Road.
- **2020 - 2021**: Anticipated construction of Yellowstone Bridge segment. (At least 2 year project)
- **2021**: Anticipated construction of RR overpass segment. (Possible 2 year project)
- **2022**: Anticipated construction of Coulson Road segment.
- **2023**: Anticipated construction of Mary Street segment.
- **2024-2025**: Anticipated reconstruction of Johnson Lane Interchange

Subject to available funding and right-of-way.
JOHNSON INTERCHANGE
Billings Bypass
Interchange Selection Process

Tier I Workshop

- Conducted July 2017
- Based on 2040 volumes, all intersections reach LOS F under current diamond configuration
- 12 interchange concepts considered
- Based on safety, operations, right-of-way, and potential cost, 5 concepts advanced to Tier II.

- Alt 2A – DDI with Relocation of N. Frontage Road
- Alt 2B – DDI with Realignment of N. Frontage Road
- Alt 3B – Partial Cloverleaf with Direct Connection to N. Frontage Road
- Alt 5A – Single Point (SPUI) with Relocation of N. Frontage Road
- Alt 5B – SPUI with Realignment of N. Frontage Road
Interchange Selection Process

Tier II Workshop

- Conducted February 2018
- Reviewed refined, detailed operations and geometry of advanced alternatives
 - Network Operations (how all intersections interact)
 - Travel Time
 - Average Vehicle Delay and Queues
 - Ramp Operations / Interstate
- DDI and SPUI have similar operations (LOS C or better), while PARCLO could expect LOS D overall and a failing LOS for the EB ramp
- DDI safer than other alternatives
- DDI approximately $14M less expensive than SPUI

As a result of the tiered traffic and geometry analysis, a Diverging Diamond Interchange (DDI) was selected as the preferred alternative to advance to design.

A DDI configuration offered the best mix of operations, safety, and constructability.
Diverging Diamond Interchange

What is a Diverging Diamond?

Once implemented, the first DDI in Springfield MO resulted in a 60% reduction in collisions in a five month comparison of the old (diamond) interchange.
Diverging Diamond Interchange

Is this a new concept? No. The DDI configuration has been used for nearly 10 years in the US, the first being installed in Springfield MO.

Isn’t this a “big city” solution? Not necessarily. Pocatello ID, Rapid City SD, Cheyenne WY all have DDIs in operation, under construction, or currently in advanced design.
Diverging Diamond Interchange

Benefits to a DDI

Safety. Fewer conflict points, better sight distance, shorter pedestrian crossings, & improved traffic calming over traditional interchanges. Wrong-way entries extremely difficult.

Operations. Single phase traffic signals, shorter cycle lengths, “free” left and right turns, increased turn lane capacity, U-turns, and better coordination with adjacent signals. Operates well during power outages.

Cost. Reduced footprint due to the ability to use fewer lanes to move the same traffic. Less bridge structure due to fewer lanes. Reduced construction time.
Safety

A DDI will reduce the number of conflict points (points of vehicle to vehicle contact) from 26 down to 14, and reduces the number of pedestrian conflicts from 10 to 8 (assuming full pedestrian movements).

<table>
<thead>
<tr>
<th>Type</th>
<th>Crossing</th>
<th>Merging</th>
<th>Diverging</th>
<th>Peds / Bikes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Diamond</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>26 / 36</td>
</tr>
<tr>
<td>DDI</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>14 / 22</td>
</tr>
</tbody>
</table>

![DDI Diagram](image-url)
https://vimeo.com/143181922
Johnson Interchange DDI - Year 2040 AM Peak Hour (https://youtu.be/S6TsVfvH5DY)
YELLOWSTONE RIVER
Billings Bypass
Yellowstone River Bridge
Yellowstone River Hydraulics
CLOMR vs LOMR (www.fema.gov)

• CLOMR – Conditional Letter of Map Revision
 • Initial approval process through FEMA
 • Required if a project will affect river elevation and floodway
 • Required before construction

• LOMR – Letter of Map Revision
 • Once project complete, LOMR is the actual revision to FIRM maps
 • As-Built certification of constructed improvements
 • Occurs after construction

• Both CLOMR and LOMR will be completed for Bypass relative to Yellowstone River
Yellowstone River Bridge – Profile

[Diagram of Yellowstone River Bridge profile with various annotations and measurements.]

DOWL

MONTANA DEPARTMENT OF TRANSPORTATION
Yellowstone River Bridge – Typical Section
Yellowstone River Bridge - Trail

Overbank Protection

Stormwater Outfall

Gravel Pit

RCB Pass-Thru Culverts

TEDD Trail TBD